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Chapter One

Introduction

Consider a system of k scalar equations in the form
F(\z)=0¢cTF*, (1.1)

where x € F™ represents the state of a system and A € F™ is a vector parameter
which controls z. (Here F denotes the real or complex field.) A solution of (1.1)
is a pair (A, z) € F™ x F™ and the goal is to say as much as possible qualitatively
about the solution set.

Since (1.1) is a finite-dimensional nonlinear equation it might seem unnecessar-
ily restrictive or even pointless to distinguish between the A and « variables. Why
not instead write (\,z) = Z € F™" and study the equation F'(Z) = 0 where
singularity theory is all that is needed? For example, when F' : C™+" — CF is
given by a power series expansion (that is, F' is analytic), a solution Zj is called a
bifurcation point if, in every neighbourhood of Z, the solutions of F'(Z) = 0 do
not form a smooth manifold. Locally the solutions form an analytic variety, a finite
union of analytic manifolds of possibly different dimensions. So the qualitative
theory of F'(Z) = 0 in complex finite dimensions is reasonably complete.

However (i) in our applications A is a parameter and the dependence on A of the
solution set is important; (ii) we are looking for a theory that gives the existence
globally (i.e. not only in a neighbourhood of a point) of connected sets of solutions;
(iii) we are particularly interested in the infinite-dimensional equation

F(\z)=0 (1.2)
when X and Y are real Banach spaces, F' : R x X — Y is real-analytic and
F(x0)=0.
Let
Sy={zeX:F(\z) =0}

The set S normally depends on the choice of A and usually varies continuously as
A varies. However, it sometimes happens that there is an abrupt change, a bifurca-
tion, in the solution set, as A passes through a particular point Ag. For example, in
Figure 1.1 the number of solutions changes from one to two as \ increases through
Ao. For a general treatment of bifurcation theory, see [19].

At this stage it is useful to see an infinite-dimensional example in which the
global solution set can be found explicitly.
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Figure 1.1 The set S splits in two as A passes through Ao.
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Figure 1.2 The rod bends under the action of a force.

1.1 EXAMPLE: BENDING AN ELASTIC ROD I

Consider an elastic rod of length L > 0 with one end fixed at the origin of the
(z,y)-plane and with the other free to move on the z-axis under the influence of a
force along the z-axis towards the origin. If we suppose that the length of the rod
does not change (that it is incompressible) and if the force is big enough, then the
rod will bend (see Figure 1.2).

We suppose that the rod always lies in the (z, y)-plane (there is no twisting out of
the plane in the simple model which follows). To describe the rod’s configuration
let (z(s), y(s)) be the coordinates of a point at distance s (measured along the rod)
from the end which is fixed at the origin. Since

x(s) :/0 cos @(t)dt and y(s) :/0 sin ¢(t)dt,

the shape of the rod is given by the angle ¢(s) between the tangent to the rod and
the horizontal at the point (z(s),y(s)), s € [0, L].
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Figure 1.3 The angle between the tangent and the horizontal.

Let P denote the applied force. Then the Euler-Bernoulli theory [5, 6] of bending
says that the curvature of the rod at a point is proportional to the moment created
by the force. In other words,

—k¢'(s) = Py(s),

where k, the constant of proportionality, is determined by the material properties
of the rod, Py(s) is the moment of the applied force and —¢’(s) is the curvature at
the point (z(s), y(s)). It follows that if P = 0 then ¢ must be constant, and that
constant must be 0 (mod 27) since y(L) = 0. From now on we consider only the
case P > 0. Since ¢/ (s) = sin ¢(s) and y(0) = y(L) = 0 this gives

¢//(S) + Asin (ZS(S) =0, s¢€ [Oa L]a ¢/(0) = ¢/(L) =0, (1.3)

where A = P/k > 0. If ¢ is a solution of (1.3), then so is 2k7 + ¢, for any k € Z.
We therefore assume that ¢(0) € (—m, 7). (If $(0) = £ then ¢ is a constant.)

For all A > 0, (A, ¢) = (A, 0) is a solution of (1.3). This means that the mathe-
matical model of bending admits a solution representing a straight rod, irrespective
of how large the applied force might be. These solutions, ¢ = 0, A > 0 arbitrary,
comprise the family of trivial solutions. To be realistic the model must also have
solution corresponding to a bent rod (such as depicted in Figures 1.2 and 1.3). Note
that any solution of (1.3) must satisfy the identity

¢'(s)” + 4Xsin’(39(s)) = 4Asin®(3¢0), s € [0, L], (14)

where ¢g = ¢(0). This means that (¢(s), ¢'(s)), s € [0, L], lies on a segment of
the curve in (¢, ¢')-phase space (see Figure 1.4) given implicitly by

{(¢.¢') €R?: ¢'? + 4Asin® 1¢ = 4\sin? 1y} C R

We therefore see that there is a solution joining (—|¢gl,0) to (|¢ol|,0) in the
half-space {(¢,¢’) € R?, ¢’ > 0} and one joining (|¢g|,0) to (—|¢po|,0) in the



4 CHAPTER 1

/
©

—|ol | ol

Figure 1.4 The direction of solutions in phase space.

half-space {(¢,¢') € R%, ¢’ < 0}, the corresponding value of L being given by
the formula

_ / dol_ _ /W 4

~Jo ldo|/ds —|¢ol \/4)\Sin2§¢0—4/\sin2 ¥0)
_ i
VA i g sin? 0

where 0 € [—m/2,7/2] is given by sin(¢/2) = sin(|¢o|/2) sin §. In fact there are
other solutions of (1.4) which in Figure 1.4 go around the curve 1 K times for any
positive integer K. For such solutions

LK/” a0
VA s \/1 — sin? 1|¢p| sin” @

This integral increases in || and converges to +o00 as |¢g| — .

Since L is the given length of the rod, this relation for each K is an implicit
relation between ¢y = ¢(0) and A\ when (), ¢) is a solution of (1.3). We can
best describe the situation with the aid of a bifurcation diagram in which A is the
horizontal axis, ¢q is the vertical axis, and L is fixed, see Figure 1.5.

The different curves correspond to different values of K, and it is easily checked
that the K*" curve intersects the horizontal axis at (K /L)2.

It is fortunate but unusual that (1.3) can be reduced to (1.4) and that L can be
calculated in terms of elliptic integrals. Because of this, solutions to (1.3) of all am-
plitudes can be found more-or-less explicitly. This is not the case for slightly more
complicated problems and almost never for partial differential equations (PDEs).
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Figure 1.5 Bifurcation diagram.

General methods suitable for PDE applications are based on a study of (1.2). To
put (1.3) in such a setting let

X ={¢eC?0,L]: ¢'(0) = ¢'(L) = 0},
Y =C[0,L] and F(\,¢) = ¢ + Asing € Y,

for all (A\,¢) € R x X. Then F : R x X — Y is smooth (Chapter 3) and real-
analytic (Chapter 4). In Chapter 8 we show how equation (1.2) can be reduced
locally to a finite-dimensional problem. This means that if (A, z¢) satisfies (1.2)
then there is a neighbourhood U of (A\g,x¢) in R x X, a neighbourhood V' of
(X0,0) € R x RY and an equation

f2)=0eRM (N\,2) eRxRY, N, MeN,

such that the solutions of the two equations are in one-to-one correspondence. The
reduction to finite dimensions in §8.2 is called Lyapunov-Schmidt reduction and
leads immediately to a local bifurcation theory based on the implicit function theo-
rem. In particular, it yields a classical relation between a nonlinear problem and its
linearization.

1.2 PRINCIPLE OF LINEARIZATION

Roughly speaking, the principle of linearization [39] derives from the feeling that
when F'(A\,0) = 0 for all A and solutions with ||z|| small are sought, the non-
linear problem F'(A,z) = 0 might as well be replaced with the linear equation
0. F[(A\,0)]z = 0, where 9, F[(A, 0)] denotes the linearization of F' with respect to
ratx = 0. Since sin ¢ = ¢+ O(|¢]*) as ¢ — 0, the linearization of the elastic-rod
problem at (Ao, 0) is

¢"(s)+ Xop(s) =0, se€[0,L], ¢'(0)=¢'(L)=0, \g >0,
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and this problem has non-trivial solutions if and only if
Mo = (K'w/L)* with ¢(s) = cos(Kns/L), K € N.

The question is, can any inference be drawn from this about the nonlinear problem
(1.3)? The answer is that in quite general situations (including equation (1.3) as a
special case) \q is a bifurcation point on the line of trivial solutions of (1.2) only
if the linearized problem d, F'[(A\o,0)]x = 0 has a non-trivial solution. The fact
that this is also sufficient for bifurcation from the line of trivial solutions for (1.3)
(but not in general) is a consequence of the theory of bifurcation from a simple
eigenvalue, see §8.4 and §8.5.

1.3 GLOBAL THEORY

It is clear from Figure 1.5 that there is more to the solution set of equation (1.3)
than is predicted by local theory. Global features of the diagram are not a conse-
quence of finite-dimensional reduction methods alone. We will see in Chapter 9
how local bifurcation theory, the implicit function theorem and some elementary
results on real-analytic varieties can be used to piece together a global picture of
the solution set of (1.2), without assumptions about the size of the solutions un-
der consideration. Provided some general functional-analytic structure is present
and F' is real-analytic, the global continuum C of solutions which bifurcates from
the trivial solutions at a simple eigenvalue contains a continuous curve R with the
following properties.

® R = {(A(s),k(s)) : s € [0,00)} C C is either unbounded or forms a closed
loopin R x X.

® For each s* € (0, 00) there exists p* : (—1,1) — R (a re-parameterization)
which is continuous, injective, and

p*(0) =s*, t— (A(p*(t)),k(p*(t)), t € (—1,1), is analytic.

This does not imply that 2R is locally a smooth curve. (The map o : (—1,1) —
R? given by o(t) = (t?,t?) is real-analytic and its image is a curve with a
cusp.) Nor does it preclude the possibility of secondary bifurcation points on
fR. In particular, since (A, %) : [0,00) — R x X is not required to be globally
injective; self-intersection of R (as in a figure eight) is not ruled out.

® Secondary bifurcation points on the bifurcating branch, if any, are isolated.

See Theorem 9.1.1 for a complete statement and §9.3 for an application to the
elastic-rod problem. This result about real-analytic global bifurcation from a simple
eigenvalue is a sharpened version of a theorem due to Dancer. His general results
[24, 26] deal with bifurcation from eigenvalues of higher multiplicity and give the
path-connectedness of solutions sets that are not essentially one-dimensional. Since
his hypotheses are less restrictive, his conclusions are necessarily somewhat less
precise. The topological theory of global bifurcation without analyticity assump-
tions was developed slightly earlier, first for nonlinear Sturm-Liouville problems
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(such as (1.3)) by Crandall & Rabinowitz [21], then for partial differential equa-
tions by Rabinowitz [50], and for problems with a positivity structure by Dancer
[25] and Turner [64]. Their basic tool was an infinite-dimensional topological de-
gree function and the outcome was the existence of a global connected (but not
always path-connected) set of solutions. Although it is sometimes possible to ar-
gue from the implicit function theorem that the connected set given by topological
methods is a smooth curve in R x X, this approach fails if there is a secondary
bifurcation point on the bifurcating branch.

What is important is that in the analytic case a one-dimensional branch can be
followed unambiguously through a secondary bifurcation point. In fact a one-
dimensional branch is uniquely determined globally by its behaviour in an open
set and can be parameterized globally, even when it intersects manifolds of solu-
tions of different dimensions (see §7.5).

1.4 LAYOUT

We begin in Chapter 2 with a review, without proofs, of the linear functional anal-
ysis needed for nonlinear theory. Chapter 3 introduces the main results from non-
linear analysis, including the inverse and implicit function theorems for functions
of limited differentiability in Banach spaces. Chapter 4 covers similar ground for
analytic operators and operator equations in Banach spaces. In Chapters 5, 6 and 7
we consider finite-dimensional analyticity with particular regard to analyticity over
the field R. We prove the classical theorems of Weierstrass on the reduction of an
analytic equation to a canonical form which involves a polynomial equation for one
variable in which the coefficients are analytic functions of the other variables.

Chapter 8 deals with the finite-dimensional reduction of infinite dimensional
problems. When the infinite-dimensional problem involves analytic operators, so
does the finite-dimensional reduction and the mapping from solutions of the latter
to solutions of the former is also analytic. This chapter is the link between the
theory of finite-dimensional analytic varieties and infinite-dimensional problems in
Banach spaces. Chapter 9 considers what conclusions can then be drawn about
global one-dimensional branches of solutions of real-analytic operator equations.
This concludes the abstract theory.

Chapter 10 illustrates our discussion of global real-analytic bifurcation theory
with a substantial example from mathematical hydrodynamics: the existence ques-
tion for steady two-dimensional periodic waves on an infinitely deep ocean. There
is only one real parameter A in the problem, the square of the Froude number which
represents the speed of the wave.

In his 1847 paper [56] Stokes discussed nonlinear waves with small amplitudes
using power series. At the time the proof of convergence was very difficult and only
in the 1920s did Nekrasov [47] and Levi-Civita [42], independently, settle the ques-
tion. Nowadays the existence of small-amplitude water waves can be recognised as
nothing more complicated than bifurcation from a simple eigenvalue.

In an 1880 note, Stokes [57] conjectured the existence of a large amplitude pe-
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riodic wave with a stagnation point and a corner containing an angle of 120° at its
highest point. He further speculated that this wave of extreme form marks the limit
of steady periodic waves in terms of amplitude (the Stokes wave of greatest height).

In Chapter 10 we show how real-analytic global bifurcation theory can account
for the existence of waves of all amplitudes from zero up to that of Stokes’ highest
wave. See [60] for an account of topological methods applied to the same problem;
the conclusions there are, in general, weaker.

Almost all the material here is to be found in the literature. The novelty is in the
selection and organization of the material with bifurcation theory in mind. Each
chapter ends with notes on sources.





